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ABSTRACT

A computer program using the finite-element method has
been written to describe the elastic-plastic behavior of notched
bars under plane-stress tensile loading. At load levels below
general yield, notch-root strain measurements made on bluntly-
notched (Kt = 3.06), 2024-T3 aluminum sheet specimens are
within 8 percent of the values predicted by the numerical analysis.
Experimental and analytical results indicate that the Neuber
relationship for pure shear is not applicable to plane-stress
tensile loading for the notch geometry and strain-hardening be-
havior encountered in the present study.

PROBLEM STATUS

This is a final report on one phase of the problem; work on
the problem continues.

AU THORIZATION

NRL Problem MOI-24
Project RR 007-01-46-5431

Manuscript submitted March 30, 1971.
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FINITE ELEMENT ANALYSIS OF NOTCHED TENSILE
SPECIMENS IN PLANE STRESS

INTRODUCTION

Ductile fracture due to the growth and coalescence of voids is prevalent in many
structural metals and is governed in large part by the history of mechanical constraint
and plastic strain. In particular, McClintock (1) has shown by analysis that there is a
strong inverse dependence between fracture strain and transverse stress for hole-growth
failure. On the other hand, brittle, slip-initiated cleavage failure propagates across a
grain when a critical tensile stress is attained. The generation, evaluation, and applica-
tion of criteria for such fracture processes depends on a rather precise knowledge of the
states of stress and strain during the elastic-plastic deformation preceding failure in the
vicinity of notches and cracks. The finite element method has become an effective means
of obtaining a complete solution to elastic-plastic problems incorporating realistic con-
stitutive behavior and complicated specimen and loading configurations. Although several
two-dimensional, finite element solutions dealing with nonlinear material response have
recently appeared in the literature, experimental assessment of their validity has been
limited. Analytical and experimental aspects of the problem are frequently treated in-
dependently, making comparison of the results difficult.

As part of a study for determining ductile-fracture criteria for structural metals,
this report presents a finite element computer program dealing with elastic-plastic
deformation in notched tensile specimens under plane stress conditions. Experimental
results are given in support of the analysis. The analytical procedure is easily modified
to handle similar problems involving plane-strain deformation or axisymmetric geometry.

FINITE ELEMENT FORMULATION

The present analysis adopts first-order triangular elements in which the displace-
ments are taken as linear functions of the spatial coordinates. The Prandtl-Reuss flow
rule and von Mises yield criterion describe the plastic response of the material. Al-
though the governing matrix equations have previously been presented in Ref. 2 and 3,
for completeness a brief outline of their development will be given. Figure 1 shows a
typical triangular element with nodal points i, i, k numbered in counterclockwise order
and having coordinates xi, yi, etc. The incremental displacement components du and
dv, in the x and y directions respectively, are assumed to display a linear variation,
over the element, given by

du = a, + a2x + a3y(a)

and

dv = a4 + a5x + a6y * (lb)

The elemental strain increments are then given by

1
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Fig. i - Typical triangular
element
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Using Eqs. (1), the coefficients a,, a2, .*., a, may be solved for in terms of the
nodal coordinates (xi, y i, etc.) and nodal displacement increments (dui, dvi, etc.).
From Eq. (2) the strain increments can then be expressed by the matrix relationship

{de } = A [B] (dul ,
2A

where A represents the area of the element, [B] is identified by

(3)

0 (Yk - Yi)(Yj - Yk})

IB] = 0

LXk - Xj)

and (du} is identified by

(Xk - xi ) 0 (xi

0 (Yiv-yj) 7
-ik) 0 (Xi Xi) I

- Yi3 (>ij - Xi) (Yi - y3) (Y1 - Yk) (xi -xk) (Yk

(du) =

du .

dvibdu k

duk

I dvk

(4)

(5)
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The general form of the stress-strain relations under plane-stress conditions
(a~z = 0) is

{da) { dyy } = [D] de} . (6)

For linear elastic behavior,

1/1 - V2 v/I - V2 0

[DI = [D0] - E ll- V2 0 (7)

(SYM) 1/2(1 +

where E and v are Young's modulus and Poisson's ratio respectively.

For elastic-plastic deformation, adoption of the Prandtl-Reuss (incremental) stress-
strain law in conjunction with the von Mises yield criterion (4) gives

d
1 1

d 1 2 d 1 3

[D] = [D 0, 9] = d22 d23 (8)

(SYM) d 3 3 j

where the components dic are expressed in terms of the deviatoric stress components
-j, the effective stress F = (3/2) or! -{ , and the slope H of the effective-stress vs

effective-plastic strain curve by

' (- v)(l+v)j [1 + (o4) + 2+v ( )2] (9a)

d = (1- E)(1 + v)f [V I'axo-; + + v (,xy) jY2 (9b)

-EBoo- vc +
d =x y y( XX (Re)

1.3 V ) -V( 1 * V ) 3 + V )

= (2 -2)( + V) [+ + 2 lv(xy)2j) (9d)

23 (l-v)(l-xy X y (9e)

and

d 33 E {l v T v [(;)2 + 2vcr',x' + (oS )2 (9f)

3
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with

4 ()2H 1g)

aY- i-a )2
at'y' XX) 2f ay 2 (_h)

ii- +1( a
1-2 l+V XY XXYYJ

at 2axx - yyi)
XX 3

and

2ar -cr aS2Cyy YY XX O

iy 3

For purposes of formulating the condition of equilibrium at nodal points throughout
the finite element network, the surface tractions on each element are replaced by stati-
cally equivalent nodal forces. A relationship is then required between the change in
nodal forces and the nodal displacement increments. A linear expression is assumed,
having the form

{dF} = [K]{dul , (10)

where {du} is given by Eq. (5) and (dF1 is a column matrix containing the x and y comn-
ponents (du and dv) of the nodal force increments at nodes i, j, and k, i.e.,

dUi

dv.

{dF} 11 (i
dV1

dUk

dVk

In Eq. (10), [K is a six-by-six symmetric matrix and is referred to as the elemental
stiffness matrix,

The components of the elemental stiffness matrix are determined by imposing an
arbitrary nodal displacement increment and equating the work done by the nodal forces
to the increase in strain energy of the element. The work done on a typical element dur-
ing a nodal displacement increment (duO in which the nodal forces change by WdF is

Aw = {FIT {duf + I (dFaT {du, (12)

where the superscript T denotes the matrix transpose and {F) represents the nodal
forces acting on the element initially. Inserting Eq. (10) into Eq. (12) and successively
differentiating 8W with respect to each component of (dul gives

4
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= Ui + [k1 k 2k1 3k( 1 4 k 1 k161 {du I

a SW= vi + [k2,k 2 2k23 k2 4k2 5k 26 {du}), (13)

DSw = Vk + [k61k62k,,k,4k sk k ]{du}TSVk616636656
where the kij are components of the elemental stiffness {KI. The change in strain en-
ergy of the element during the displacement increment is

SE = At [{a}T{de} + f {daTdde}], (14)

where t is the thickness of the element and {a} contains the initial stresses. Insertion
of Eqs. (3) and (6) into Eq. (14) yields

BE = 2- [{}T [B]{du} + 41A du}T [B) r [DI [BJ {du}. (15)

Equating SE and SW, Eq. (15) is inserted into each of Eqs. (13), indicated differentiations
are performed, and like multipliers of the incremental displacement components are
equated. The result is

[K) = IA [Bl' [DIIBI . (16)
4A

In the elastic-plastic range, [K], being a function of [De.pI, depends on the instantaneous
stress state in the element as well as on the elastic constants and element geometry.

To establish equilibrium at a typical node i of the finite element network, the ap-
plied (external) force increment {dR} at the node is equated to the sum of the internal
force increments contributed by each of those elements having node i as one of its ver-
ticies. The internal force increment {dFI at node i is calculated from Eq. (10) for each
surrounding element in terms of its elemental stiffness and nodal displacement incre-
ments. When equilibrium at each of N nodes is considered in the x and y directions, the
system of linear equations

fdRP = LA] (dul (17)

is generated. The column matrices {dRP and (dul are defined by

du,

dv1

{du} = du (18)

dv.

duN

dVN

5
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and

dRX I

dRX |

dRX, (1

dRyN

where dRy, i and dRy, i represent the applied force increments in the x and y directions
at node i . The overall stiffness matrix [Al is square (2N by 2N), symmetric, and posi-
tive definite.

The nodal displacement increments (du) resulting from an applied force system
(WRI may be obtained by inversion of Eq. (17). The elemental strain and stress incre-
ments are then calculated from Eqs. (3) and (6) respectively.

COMPUTER PROGRAM

To implement the solution derived in the previous section, a computer program has
been written in FORTRAN 63 to analyze notched specimens loaded in uniaxial tension
under plane-stress conditions (,-. = 0) .

Following Yamada et al. (5), the elastic-plastic solution is generated by loading the
body in incremental steps, each load increment being just sufficient to cause an additional
element to become plastic. Initially, an elastic solution is obtained, and that element
having the largest effective stress is determined; this element yields first. To deter-
mine the load increment required to cause the next element to yield, the following pro-
cedure is adopted. A unit load is applied, and the resulting changes in stress components
are calculated for each elastic element. For a typical elastic element, the current devi-
atoric stresses are denoted by a{ , and M 1i represents the change in deviatorie stresses
due to the unit load. For a small load increment, the elemental stress and load incre-
ments are proportional, and if AP is the applied load increment necessary to just cause
the element to yield, the associated deviatoric stress increments will be APACj. Ac-
cording to the von Mises yield criterion,

(v )2 = 3 (aC , + AP A v-!) (av, +sA A ) (20)

where y-, is the uniaxial yield stress. Solution of Eq. (20) for AP gives

2 2 a 21= '3 ij li-is1 3 k1] -(21)

Aa- AAa.i.
43 11

6
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Equation (21) is evaluated for each elastic element, and that element having the
minimum value of AP, i.e., tPmin, will be the next to yield. The deviatoric stress com-
ponents in each element are then increased by the amount APmin Aa j, and the applied load
is increased by APmin. This procedure is repeated until the desired number of elements
have yielded.

One quadrant of a double-edge-notched specimen loaded in uniaxial tension is shown
in Fig. 2. To determine the elemental stresses corresponding to a unit load, the matrix
(dRI defined by Eq. (17) is formulated as follows. The applied forces acting at nodes
along boundary CD shown in Fig. 2 correspond to an applied uniaxial tensile stress of
1000 (unit loading). Applied forces at all interior nodes and those along the free surface-
boundary AD are zero. The displacement component normal to symmetry axes AB and
BC must be zero at all nodes located on these axes. If component I of the incremental
displacement matrix {du) is specified to be zero, row I and column I of the overall stiff-
ness matrix [Al (except the diagonal component) and component I of hdRI are set to zero.
This procedure effectively eliminates those equations expressing equilibrium at nodes
having specified zero displacements (and unknown force components). Since shear
stresses cannot be transmitted across an axis of symmetry, the applied forces at nodes
along boundaries AD and BC have a zero component parallel to the boundary.

-=1000

dR, =1

'Y

X A

a=0

*du 'o

B-T XES OF
SYMMETRY

Fig. 2 - Specimen geometry and finite element boundary conditions

Having formed (dPI, the overall stiffness matrix EA] is constructed from the ele-
mental stiffness matrices by successive application of Eq. (10) to each element of the
network. If, for example, element M has nodes i, j, and k, the rows of its elemental
stiffness matrix are recorded in the appropriate locations of rows 2i- 1, 2i, 2j-1, 2j,
2k-1, and 2k of matrix [Al. These entries represent the contribution of element M to
the x and y internal force components acting at nodes i, j, and k respectively. When
the internal forces from all elements have been recorded, the matrix [A) is completely

7
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formed. After solution of Eq. (17) for displacement increments, the elemental strain
and stress increments are readily obtained from Eqs. (3) and (6) respectively.

The effective-stress vs effective-plastic-strain curve of the material is approxi-
mated by a series of linear segments, the terminal points of which are entered as input
data. The stress-strain path for each plastic element is maintained within predetermined
limits of the prescribed flow curve by an iterative scheme for selecting the appropriate
tangent modulus for each load cycle (load increment). Figure 3 illustrates the procedure.
At the beginning of a load cycle the effective stress and effective plastic strain for a
typical plastic element are denoted by 6c and WT respectively. As a first approximation
to the tangent modulus, the value Ho corresponding to the slope of the prescribed flow
curve at e- is selected. During loading the element follows a linear path with slope HO
to the terminal point (5 l, C,). If F(iel) denotes the effective stress on the prescribed
flow curve corresponding to the strain W1 , the degree of deviation (COV) from the pre-
scribed curve may be expressed by

CONV _ i (22)

If coNV exceeds a critical predetermined value (CRIT), a second approximation HI to the
tangent modulus is made:

111= - 1 °(23)
1 0 

This procedure is applied for each load cycle until all plastic elements are within the
prescribed limits of the given flow curve or until the maximum allowed number of itera-
tions (NITMAX) has been achieved.

To account for changes in geometry during loading, the coordinates of the nodal
points and the thicknesses of the elements are updated by the end of each load cycle.

A general flow chart for the program is shown in Fig. 4. The parameter CYC counts
the number of load cycles performed in the elastic-plastic range; when CYC equals
CYCMAX, computation ends. Entry of CYCMAX equal to zero results in an elastic solu-
tion only. A listing of the program as well as further details concerning its use are given
in the appendix.

COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS

To assess the accuracy of the computer solution, an arbitrary notch geometry was
selected, and experimental and numerical results were compared. Double-edge-notched
tensile specimens having the dimensions shown in Fig. 5 were machined from 1/16-in.-
thick, 2024-T3 aluminum sheet. The degree of notch root strain was determined as a
function of applied loading by placing a miniature (0.030 in. by 0.030 in.), high-elongation,
resistance strain gage at the base of each notch root, For each specimen, two active and
two temperature-compensating dummy gages were wired in a bridge circuit such that the
output reflected the average strain in both notches. The specimens were loaded in ten-
sion at a crosshead speed of 0.002 in. per min, and the applied load and notch strain
were simultaneously recorded on an X-Y recorder.

The true-stress vs true-strain curve for 2024-T3 aluminum alloy is shown in Fig. 6
and was determined by placing strain gages on unnotched, sheet tensile specimens.

8
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EFFECTIVE PLASTIC STRAIN, ?9

Fig. 3 - Iterative method for selecting the
appropriate tangent modulus

Young's modulus, Poisson's ratio, and the proportional limit were determined to be
10.4 > 103 ksi, 0.33, and 45.34 ksi respectively.

From the measured variation of average notch root strain (en,) with applied load-
ing, the dependence of the strain concentration factor K2 and stress concentration factor
K,. on nominal net-section stress (a 0m) was obtained. K. and KF are defined by

enrE
KS = ff (24a)

nom

and

K,, = a (24b )
Cnom

where anr is the tangential stress at the notch-root surface. Because the stress state
at the notch root surface is simple tension (assuming plane-stress behavior), Anr was
determined from the uniaxial flow curve given in Fig. 6 by reading off the stresses cor-
responding to the measured values of Erl..

The finite element grid used to characterize one quadrant of the specimen is shown
in Figs. 7 and 8 and contains 395 triangular elements with 227 nodal points. Uniaxial
tension is assumed to act along the boundary opposite the minimum section, i.e., at a
distance from the notched section equal to 13.5 times the notch root radius. Plane-stress
behavior is assumed in all elements. The curve of effective-stress vs effective-plastic
strain was approximated by 11 linear segments with terminal points, as shown in Fig. 6.

9
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DETERMINE DEGREE OF

DEVIATION (COND) OF

PLASTIC ELEMENTS FROM

PRESCRIBED FW CURVE
N=t te~

ESTIMATE TANGENT MO"U
FOR PLASTIC ELEMENTS
DURING NEXT LOAD
INCREMENT__

Fig. 4 - Computer program flow chart
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NOTE: ALL DIMENSIONS ARE
IN INCHES

Fig. 5 - Specimen geometry for 2024-T3 aluminum sheet tensile specimen

0.01 0.02 0.03
TRUE STRAIN .ir/in.)

0.04 0.05

11

Fig. 6 - True-stress vs true-plastic strain curve
for 2024-T3 aluminum

Deviation of the elemental effective stresses from the prescribed flow curve was limited
to 0.5 percent throughout the loading history. The solution was carried out beyond gen-
eral yielding to a value of o-,r, equal to 57.17 ksi, at which point 201 elements had become
plastic. A complete listing of the input data for this problem is given in the appendix.

DISCUSSION OF RESULT

Throughout the loading history the largest strain in the finite-element mesh was
found to be the axial strain Ey in the small element located at the base of the notch-root
surface on the minimum section (Fig. 8). This strain is assumed comparable to that de-
tected experimentally by the strain gages and was used to determine the analytical varia-
tion of K2 with anom. The elemental axial stress corresponding to Cy was used to obtain
a similar relationship between Ka and rnorm.

60I

501

I

w 4C

2:

20]

I0

| = 10,4 x 103 ksi
/ q- 0.33

I 0*POINTS USED TO CALCULATE
INPUT DATA FOR FINITE ELEMET
ANALYSIS

ENT
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\ // i\ I

''V

SEE DETAIL {Fi9.8)

Y - a 1

-;3 I _1_ 5

Fig. 7 - Finite element grid for
one quadrant of the specimen5

Fig. 8 - Detail of the finite element grid near the notched section
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The elastic stress concentration factor Kt determined by finite element analysis is
3.06, which is in good agreement with the experimental values of 2.90 and 3.09. Applica-
tion of the semiempirical method given in Ref. 6 results in a value of 2.98, which further
indicates that the procedures used for deriving the stress and strain concentration fac-
tors from the present numerical and experimental results are valid.

The experimental and analytical variations of Ka and K, with anolm are shown in
Fig. 9. As the applied load is increased above that required for initial yielding (Co"m =
14.8 ksi), the strain concentration factor increases while the stress concentration factor
decreases, the latter approaching a value of unity. The overall comparison between ex-
perimental and numerical results is considered favorable. For any afos below general
yield ( <nom c 54.5 ksi), the analytical value of K, falls within 8 percent of the corre-
sponding mean experimental result. The greatest difference between experimental and
theoretical values of K, is about 11 percent, which occurs at load levels above general
yield. In this loading range, small increases in applied load produce relatively large in-
creases in notch strain, due to the general reduction in stiffness as the plastic zone
traverses the minimum section. It is likely that this increased discrepancy reflects an
accumulation of error in the analysis because of approximating the loading path by a
finite number of linear stress-strain segments. The difference in experimental and
analytical values of K, beyond general yield is less than 2 percent because of the reduced
rate of strain hardening at these high notch-root strains; i.e., a relatively large dis-
crepancy in notch-root strain results in only a minor difference in the corresponding
value of notch stress.

b

P0
U

0

I
a:

0a:
0
U

20 30 40
NOMINAL NET-SECTION STRESSIksi)

Fig. 9 - Experimental and analytical variation of stress and strain
concentration factors with not-section stress



C. A. GRIFFIS

In his analysis of sharply notched bars loaded in pure shear, Neuber (7) found that
the elastic stress concentration factor is equal to the geometric mean of the stress and
strain concentration factors, i.e., KK,/Kt2 = 1. Recently several investigators (8,9)
have suggested that this result may be valid for notched bars loaded in tension under
plane-stress conditions. Figure 10 gives the analytical and experimental variation of the
quantity Xaa/vt 2 with ,nom, It is evident that K)/YtK2 is less than unit over most of the
loading range investigated, reaching a minimum value of 0.75 to 0.79 at a nominal stress
between 29 and 37 ksi. Thus the Neuber relationship is not applicable to plane-stress
tensile loading for the notch geometry and stress-strain behavior encountered in the
present study.

b NIT~i At YIELO HGENERAL YiELD

0.5 tFAA ( FEA )

DSPECIMEN 1
C SPECIMEN 2

-FlNITE ELEMENT ANALYSIS (FEA)
I I I I:

0 10 20 30 40 50 60
NOMINAL NET-SECTION STRESS QksK5

Fig. 10 - Experimental and analytical variation
Of KfK,/K5t with net-section stress

The finite element analysis predicts that the plastic zone develops in the manner in-
dicated in Fig,. 1i. Yielding initiates at the notch root and spreads more or less uniformly
in all directions for cr7,l, less than about 40 ksi. At higher loads the plastic zone becomes
somewhat kidney shaped, and, as general yielding is approached, growth occurs primarily
in that portion most removed from the minimum section. At general yield the plastic
zone envelops a central core of elastically strained material.

The axial-stress ay and axial-strain EY distributions along the minimum section
are presented in Fig. 12 for two levels of loading (anam 37.99 and 51.62 ksi) in the
elastic-plastic range. Also shown are the stress and strain distributions at c... = 37.99
ksi if the material were completely elastic. These distributions were obtained from
finite element results by assuming that the stress and strain at a given node on the mini-
mum section are given by the average of the values found in surrounding elements. As
for the case of purely elastic response, the strain in the elastic-plastic range is maxi-
mized at the notch-root surface and decreases uniformly with distance beneath the notch.
However, the strain gradients in the plastic zone are considerably greater than those
corresponding to purely elastic behavior, which accounts for the increase in w, with
anon shown in Fig. 9.

Examination in Fig, 12 of the stress distribution near the notch reveals that a major
effect of elastic-plastic flow (as opposed to linear-elastic response) is a redistribution
of load so as to markedly reduce the stress gradients in the plastic zone. Once yielding
begins, the axial stress rises slightly with distance below the notch, reaching a maximum
value between the notch surface and the elastic-plastic boundary. The extent of this rise
depends on o, but it is generally small; a never increases more than 3.5 percent
above its notch root value over the load range investigated. The existence of such a

14
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Fig. 11 - Extent of the elastic-plastic boundary at
the indicated levels of net-section stress

maximum in axial stress generally depends on the notch geometry, on the degree of
strain hardening, and, perhaps, on the yield criterion.

SUMMARY AND CONCLUSIONS

1. A computer program using the finite element method has been written to analyze
plane stress and elastic-plastic deformation in notched tensile specimens. Loading is
applied incrementally, each increment being of just sufficient magnitude to cause an ad-
ditional element to become plastic. The Prandtl-Reuss flow rule and von Mises yield
criterion are employed to characterize the elastic-plastic response of the material.

2. Numerical results are in reasonably good agreement with experimental notch root
strain measurements made on double-edge-notched tensile specimens made from 2024-T3
aluminum (proportional limit = 45.3 ksi) sheet. Analytical and experimental values of the
strain concentration factor differ by a maximum of 8 percent at load levels below general
yield, i.e., anm< 54.5 ksi.

3. Experimental and numerical results indicate that the Neuber relationship,
KK.E/Kt2 = 1, is not applicable to plane-stress tensile loading for the notch geometry and
strain-hardening behavior encountered in the present investigation. The value of
KaKs;/Kt2 was found to be less than unity over the major portion of the load range studied,
reaching a minimum value of 0.75 to 0.79.

15



C. A. GRIFFIS

I 3 4
DISTANCE I3ENEATH NOTCH ROOT

( NOTCH ROOT RADIUS = I )

Fig. 12 - Axial stress and strain distribution
along the minimum section for net-section
stresses of 37.99 and 51.62 ksi
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Appendix

COMPUTER PROGRAM AND INSTRUCTIONS FOR USE

NOTATION

The meaning of the various symbols used In the program and the sizes of arrays
are given below.

- Number of elements

- Number of nodes

- Number of nodes located on the boundary opposite the
minimum section (Fig. 2, boundary CD)

- Number of nodes for which the x displacement is specified
to be zero

- Number of nodes for which the y displacement is specified
to be zero

- Number of linear segments on the specified flow curve

- Bandwidth of the overall stiffness matrix. BDW1W 4
[maximum difference between adjacent nodal numbersj+3.

- Uniaxial yield stress

- Poisson's ratio

- Young's modulus

- Maximum allowable deviation from the prescribed flow
curve (see Fig. 3)

- Calculated deviation from the prescribed flow curve

- Maximum number of load increments to be applied. Entry
of CYCMAX equal to zero resuts in an elastic solution
only.

- Applied load increment necessary to cause an additional
element to yield

- Count of the number of cycles (load increments) com-
pleted

- Maximum number of iterations allowed in determining
the tangent modulus for any load increment

18
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NITER

JI

SBAR

CORD (N, 2)

NP (M,3)

AREA (M)

GE (3, 3)

DU (6)

DE (3)

DELM (M, 5)

DELM1 (M, 5)

SELM (M, 5)

SELM1 (M, 5)

B (3, 6)

DSPX (M2)

DSPY (M22)

DS (3)

EP(M)

FSPEC (M1, 3)

- Count of the number of iterations completed for a given
load increment

- First element to yield

- Effective stress in the element Ji at initial yield

- CORD (I, 1) and CORD (1, 2) represent the x and y coordi-
nates, respectively, of node I

- NP (I, 1), NP (1, 2), and NP (I, 3) contain the nodal numbers
in counterclockwise order for element I

- AREA (I) contains the current area of element I

- Stress-strain matrix (Eq. (8))

- Incremental nodal displacement matrix (Eq. (5))

- Incremental strain matrix (Eq. (2))

- DELM (I, 1), DELM (I, 2), DELM (I, 3), DELM (1, 4), and
DELM (I, 5) contain e.x, eYY 'yY1 e6,, and the effective
plastic strain, respectively, in element I (accumulated
values)

- Strain increments for all M elements resulting from a
given load increment

- SELM (I, 1), SELM (I, 2), SELM (I, 3), SELM (I, 4), and
SELM (I, 5) contain cra s, eyy, ay, o-r Z, and the effective
stress, respectively, in element I (accumulated values)

- Stress increments for all M elements resulting from a
given load increment

- Strain-displacement matrix (Eq. (4))

- Nodal numbers of the nodes for which the x displacements
are specified to be zero

- Nodal numbers of the nodes for which the y displacements
are specified to be zero

- Incremental stress matrix (Eq. (6))

- EP (I) distinguishes elastic and elastic-plastic elements.
If EP (I) is zero, element I is elastic; if EP (I) is unity,
element I has yielded.

FSPEC4(I, 2) and FSPEC (I, 3) are the x and y components,
respectively, of the applied force acting at node FSPEC (I, 1)
which is located on the boundary opposite the notched sec-
tion. FSPEC (I, 2) and FSPEC (1, 3) correspond to an ap-
plied uniaxial tensile stress of 1000 integrated between
midpoints of the two segments joining node FSPEC (I, 1)
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with its two adjacent boundary nodes. This force system,
which is entered as input data, is referred to as a unit
load (See Fig. 2).

- THKNS (I) contains the current thickness of element I

- HEFF (I) contains the current tangent modulus for ele-
ment I

A (2N, BDW + 1)

DELF (2N)

DELU (2N + BDW - 1)

H (NO, 3)

B1(BDBW 1)

CI( BDW + 1

- This array contains those components of the overall stiff-
hess matrix (Eq. (17)) which lie on and above the main
diagonal. Other components need not be recorded, since
the overall stiffness matrix is symmetric. The diagonal
element in row I of the overall stiffness matrix is con-
tained in A (I, 1).

- Applied force matrix {dR} defined by Eq. (19)

- The displacement matrix {du} defined by Eq. (18). The
last (BDW - 1)/2 locations of this array are incorporated
for convenience in solving Eq. (17).

- H (1, 1) contains the slope of the I dt segment of the pre-
scribed effective-stress vs effective-plastic-strain curve.
H (1, 2) and H (1, 3) are the effective stress and effective
plastic strain, respectively, at the beginning of the Ith
segment.

- Arrays used in subroutine SOLVE

SUBROUTINES

Two subroutines, SUBSEM and SOLVE, supplement the main program. For a given
value of effective plastic strain (EM1), subroutine SUBSEM returns the corresponding
value of effective stress (SEMI) and tangent modulus (HEMI) given by the prescribed
flow curve. Using the Gaussian elimination method, subroutine SOLVE* is used to solve
the system. of linear equations given by Eq. (17). This subroutine takes advantage of the
fact that the overall stiffness matrix fAl is symmetric and likely to be highly banded.
These characteristics significantly reduce computer storage requirements.

INPUT DATA

The order in which data are read and the formats employed is as follows.

The author is indebted to Dr. D. J. Krause for providing this subroutine.

THKNS (M)

REFF (M)

20
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Data Format

PR, BDW, N, M, M2, M22, MI F4.0, 6(I4)

CYCMAX, NITMAX, CRIT, E, YBAR, NO 2(14), F5.0, 2(El0.5), 14

First column of array CORD (N,2) 12(F6.4)

Second column of array CORD (N,2) 12(F6.4)

First column of array (NP (M,3) 26(13)

Second column of arry NP (M,3) 26(13)

Third column of array NP (M,3) 26(I3)

MI cards, each containing successive F3.0, 2(F12.9)
rows of array FSPEC (M1,3)

Array DSPX (M2) 26(1I3)

Array DSPY (M22) 26(13)

No cards, each containing successive 3(E10.5)
rows of array H (NO,3)

OUTPUT

After an elastic solution is obtained, elastic stresses and strains for each element
are printed in units of oa/1000 and oa/1000E, respectively, where cra is the applied uni-
axial stress and E is Young's modulus.

For elastic-plastic behavior, accumulated stresses and strains are printed every
tenth cycle. Stresses and strains are expressed in units of S/1000 and S,/10O0E, re-
spectively, where Sy represents the applied stress necessary to initiate yielding. The
quantity s,/1000 equals YBAR/SBAR, where YBAR is the uniaxial yield stress and SBAR
represents the largest effective stress obtained from the elastic solution, The accumu-
lated applied stress, in units of Sy, and the element yielded, JYD, are printed after each
cycle.

PROGRAM LISTING

The listing of the program and the subroutines follow after the next section.

TYPICAL INPUT DATA

The input datafor the specimen analyzed follows the listing of the computer program
subroutines.
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PROGRAM EPLASS
C ELASTO-PLASTIC SOLN FOR PLANE STRESS

TYPE INTEGER 8DWiDSPXvS4PYS.XtYsZ2EPsCYCVCYCMAtX4SIXIlX2,X3
TYPE REAL INCR.INCRI
DIMENSION CORD(227.2).NP(395,33)AREA(395),GE{3,33,DSPXtb6).

20Ek lM({39S5 * 5I E FF (3Y95) , DSP Y 1i6 ) FSPEC(I1J!*33,1*Tl-K NS i3S5 1*E P <395 
COMMON /I/A(454,36)eDELF{4S4 A*DELUd4a9)
COMMON /A/H t 30,3)

67 FORMAT4///1X.3NCYC.2X1i4,IOX*5HNITER.2X,14)
82 FORMATCJ/IX I9HSTRAINS FOR EP CASE/4X,24HELEMENT--X.Y.XYVZ*cFF PL)
83 FRMATTlXvl4v4X,5lE16*9,q2X)
84 FORMAT4 1H120HSTRESSES FOR EP CASE/4X*.IHELEMENT--X.Y.XYsZ.EFF)
90 FORMATt1X429HMAX DEVIATION FROM FLOW CiJVE.2XiEi6-9.
88 FORMAT(///1X4,l2HNlTER=NJTMAX)

1 FORMAT{F4046(14) )
2 FORMAT 42(14).F5.0O24F10.5),24)

47 FORMATt6(2X(EI16.9))
Si FORMAT(//tlX6HCYCMAXk3X,6FNITMAX,3X,2HJ1t7X,4HSeAR.l14X,4HY8AI¾ 14X%

lHE.14XZHN,*3X*4HCRIT/L2X.14,2X l4,4X,14.pXiEl6.,zo2XE1tb.S,2iX
?E16.9i3Xi 4o2XiF7.43)

13 FORMAT(EI,05iElO*5,EIO.5)
103 FORMATItIX27HIHIS ELEMENT IS NOW PLASTIC,2X-14)
108 FORMATI1?F6.43
111 FORMAT(2613)
113 FORMATLF3-0O2F12.93
117 FORMATtiff u3XiZHPRt9X lHMt5XtIHN/

I l2XvF9§*52X 4l*iX. I 4X//S 
11;8 FORMAT1lHI.I6HELASTIC STRESSES/4X, 17HELEMENT-CXeYeXY.Z)
120 FDRMAT,/1XIX15HELASTIC STRAINS/4Xi l7HELEMENT--X.Y.XY.Z)
139 FORMAT{ IX, 16HACCUMULATED LOADO2XtF9.*S

C
C READ INPUT DATA AND ZERO ARRAYS.
C

READ(60411 PR.SDWiNvMMZiM22,M1
QEADitO2.1 CYCMAX.NITMAX.CR1TqE.YBARiNO

N2=2*N
M3=(BDW+1 )/2
M4elRoW-l /2
00 109 J=.,2

109 READ160qIOe18 (CORO, J),2I,NI
DO t10 J=1.3

110 READ I6 O.1151 I N P4IAJ),I=1.M)
DO 112 1=1,Ml

112 READW60OI13) FSPECtI*I3,FSPECtI 2)*FSPEC(I13}
READ(60,1 1) {DSPX{I3*I=lM2)
READ( 60t 1113 4D5PYJ 1, Im- ,M221
EFICYCMAX.EO.n) GO TO 173
00 172 IlNO

172 PEADOb(r,13) (H4IIJ) J=1.*3)
173 CONTINQE

DO 126 1='1tM
HEFF( I ITHKNS( 13=0.0
OELM4 1 -5)=0D0

126 EP(l)=0
DO 96 1=!1N

96 DELUIt2*11=DELU(2*1-1;=OELFt2*I,=DELF(2*I-1,=O*o
CSC=J 0=o
SBAP=0*t 
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ACCUM= 1.0
NITEP=1
IF(CYCE.E.03 GO TO 53

138 CONTINUE
C
C FROM THE ELASTIC SOLN. DETERMINE THAT ELEMENT(J11 HAVING THE
C LARGEST EFFECTIVE STRESSISeARI. ESTIMATE TANGENT MODULUSIHEFFI
C FOR ELEMENT JI FOR FIRST LOAD CYCLE.
C

SBAR= O0

DO 51 T=I1M
TIZ(2.O*SELM(I.13-SELMIIs23)/3.0
T2=(2.O*SELM(lI23-SELM( I.13/3.0
T3=(-SELM(IIi1-SELMI1.23 /3.0
T4=SELM(1 31
SELMI.,5)=SORTF(3.0*(Tl**2+T2**2+T3**2-2.O*T4**2)/2.0)
IF(SELM(CI53.LT.SBAR3 GO TO 51
S8AP=SELMC I .53

5! CONTINUE
EPJ=I 1=1
HEFF(Ji 3H(l.1I

C
C CALCULATE THICKNESSCTHKNS) OF EACH ELEMENT AT INITIAL YIELD.
C

DO 175 1=19M
175 THKNS(13=I.O+DELM(I143*YBAR/cSBAR*Ec

c
C FORM OVERALL STIFFNESS MATRIX HAVING COMPONENTS A(IiJI.
C

53 CONTINUE
00 125 1=I.N2
DO 125 J=itM3

129 ACIiJ3=O.O
DO 92 I=1.M
X=NP 1 13
Y=NPI C23
ZNP'1.33
AREA(1)=05* CURD Z92l*CORDlY--COD(Z*21*CokDtX Il-CURu{x21*
I CORLDYsl)+CORD(X.u*CoRPDY.2}-CORD(Y.23*CORD(Zsl)+
2 C0RDCZ.j1*CORD(X,2)3
S-l

C FORM ELASTIC STRESS-STRAIN MATRIX IF APPROPRIATE.
COEFl .0/(C1O-PR**23
IF(EPII-.EO.13 GO TO 56
GE(1*1)=COEF
GECz22)=GE( I . 13
GEr l.21=C4EF*PR
GE(? iI)=GE CI,2)
GEt3.31=1.ox/2.0*Ci.O+Pp 3>
GE(1.33=GE(3.13=GE(342=GE(2 .3)=O.o
GO TO 57

56 CONTINUE
C FORM ELASTIC-PLASTIC $TRES-STHAIN MATRIX IF APPROPRIATE.

Tl=(2.O*SELM( 11)-SELMsI .2)/3.0
T2=(2.o*SELM( I.2-SELM(1.13)/3.0
T4=SELMIT13)
F9.O*E/C4.O*SELM( t .5I**2*HEFFPCl1

I I I �M I �l
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R=1.o+F**( TI*T23**2) *COEF+2.O*F*tT4**2-TI*T2)/ lO+PR3
GEI i1)=*i1.O+F*T2**2+2.0*F*T4**2/1 .O+PR))*COEF/R
GEtlI2)3nP9-F*TI*T2+2.0*PR*F*T4**2/41.O+PRI)*COEF/R
GE(2q1)=GEZ 12)
GE(I,33=c-F*CPR*T2+TI3*T4/11.O+PR)3*COEF/R
GELS.!1mGE( Ii3
GE(2,2)=tl.O+F*Tl**2+2.0*F*T4**2/t1.O+.*R)f*COEF/R
GE(2.31=t-F*LPR*TI+T2)*T4/(l.O+PR))*COEF/R
GE(3A2)=GE42.33
GEC3933zt1.O-PR+F*tTI*42+2.O*PR*TI*T2+T2**2)/1*10+PR))*
1COEF/42.0*R3

57 CONTINUE
COEFII.O /14.O*AREAti))
IF(CYCGT.03 COEFI=COEFI*THKNSlI1

58 CONTINUE
c BBX*BBY.B5Z.CCX.CCY.CCZ ARE NON-ZERO COMPONENTS OF THE STRAIN-
C DISPLACEMENT MATRIX*t.

BBX=CORO(Y*23-CORD4Z.21
BBY=CORDCZv2)-CORo X*2)
BBZ=CORD(X.2)-CORDCY92)
CCX=CORDIZin3-CORDIYeI)
CCY=CORDlX.1)-CORD(ZCTe
CCZ=CORDCY.1)-CORDIX.)

C SINCE THE OVERALL STIFFNESS MATRIX IS SYMMETRIC, CALCULATE
• ONLY THOSE COMPONENTS LYING ON AND ABOVE DIAGONAL. THE
C DIAGONAL COMPONENT OF ROW I iS DENOTED Ailol).

At2*X-1II=COEFI *(BBX*{8BX*GE(I.13+CCX*GE4341))+CCX*(f6X*
IGELt3 1+CCX*GE(3,3) )+A42*X-1413
AC2*X-12)=COEFl *iBBX*CCCX*GEC2,i)+BsX*GE(3JI))+CCX*(CCX*

1GE(3.2)+BBX*GE(3,311)+A(2*X-1 .2)
A42*Xsil) =COEFI *LCCX*(CCX*GEIS.23+SSX*GEC3,2)l+BBX*CCCX*

1GEIŽ,3)+88X*GEC3.3)))+AC2*X,1)
IF (Y.LT.X) GO TO 59
A4a*X-I*2*Y-2*X+l>=COEFl *(aBX*ISSY*GEIl*l)+CCY*GEI3#1))+CCX*
IISSY*GEt3.l)+CCY*GEt3o3)3)+At2*X-I ,2*Y-2*X+1)
A12*Xv2*Y-2*X3 =COEFI *(CCX*(dfY*4tt42,)+CCY*GE(3,23)+8BX*
IIeBY*GE(3$1)+CCY*GE43,3Ij3+A42*X.2*Y-2*X)
A12*X-1,2*Y-2*X+2)=COEFI *LBSX*(CCY*GEt2.I)+t3Y*GE(3.1))+CCX*

I CCY*GE(3.2)+15Y*GEI 33)>)+AI2*X-1 2*Y-2*X+2)
A{2*X,2*Y-2*X+I3 =COEFI *4CCX*4CCY*GE(2,23+EIEY*GE(3,2))+88X*

ICCY*GE43*2)+B8Y*GEt3.31l)+At2*X.2*Y-2*X+2)
59 CONTINUE

IF (Z.LT.XI GO TO 60
AC2*X-1,2*Z-2*X+I)=COEFI *I16X*C8BZ*GEti.1)+CCZ*GE(3.1))+CCX*
liBBZ*GEt3ol)+CCZ*GEC3.3)3)+A12*x-1,2*Z-2*X+i)
A(2*X,2*Z-2*X3 =COEFI *ICCX*(BSZ*GE(2ti)+CCZ*GEC3J21 +aIX*
I4185Z*GE(341)+CCZ*GEI 333) 3+A(2*X.2*Z-2*X3
AC2*X-l.2*Z-2*X+2'=COEFI *CBBX*tCCZ*GEC2.1)+BBZ*GE(391))+CCX*
1tCCZ*GEt3,2)J*BZ*GEL33)3j)+At2*X-1S2*Z-2*X+2)
A12*X,2*Z-2*X+I) =COEFI *ICCX*ICCZ*GE242)++BaZ*GEC3,2))+BbX*
I CCZ*GE(3.2)+BSZ*GE393)) )+A(2*X,2*Z-2*X+1)

60 CONTINUE
IF4S*EQ.2) GO TO 62
IFCS.EQ.3) GO To 92
X=NP(I.2)
Y=NP{1.3)
Z=NP(lst)
S=S+*
GO TO 98
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62 CONTINUE
X=NP(t I 3)
Y-NPt 1*1)
Z=NPCI'23
s=s+I
GO TO 58

92 CONTINUE
C
C ZERO ROWS AND COLUMNS RELATING TO THOSE NODES HAVING SPECIFIED
C DISPLACEMENTS EOUAL TO ZERO.
C

DO 19 L=l M2
LL=DSPX(L)
DELFt2*LL-I3=O.O
DO 19 LLI=2,M3
IF(C2*LL-LLi).LE.O, GO TO 44
A12*LL-LL1.LL1)0O.O

44 CONTINUE
AC2*LL-1 LLI)=OO

19 CONTINUE
DO 20 L1.-M22
LL=DSPYCL3
DELFi12*LL)=OO
DO 20 LL1=2.M3
IF(12*LL-LLI+1).LE.O) GO TO 45
A(2*LL-LLI+ILL)=O.O

4S CONTINUE
AC2*LLLLtI3=O.O

20 CONTINUE
C
C IMPOSE UNIT LOAD INCREMENT AT BOUNDARY NODES.
C

DO 124 I=]9N
124 DELU(2*I-1)=DELUC2*IV=DELF(2*I-1)=DELFC2*I)=O.O

DO 18 I=l,MI
Mll=FSPFCCI.I1
DELFC2*M11I=FSPEC(I,3)

lB DELFC2*M11I-l=FSPECC l23
51=1

C
C USING GAUSSIAN ELIMINATION. SOLVE SYSTEM OF EQUATIONS FOR DISPLACEMENTS.
C

CALL SOLVE 1N2,BDW)
C
C CALCULATE STRAIN AND STRESS INCREMENTS DUE TO UNIT LOAD.
C

INCRI* 0
DO 69 14=I,M
X=NP 14.13
Y=NP 14.23
Z=NPC14,3)

C FORM STRAIN-DISPLACEMENT MATRIX, B. AND CALCULATE STRAIN INCREMENTS-
BBX=CORD1 Y.2)-CORD C Zq21
BBY=CORDCZ,2 -CORD CX,21
BBZ=CORD(X,2 1-CORD C Y,2)
CCX=COROtZ 13-CORD(Yil1
CCY=CORDtX,1I-CORDOZ,I1
CCZ=CORDCY.t)-CORDCX,1}
DO 70 IR=1,6



26 C. A. GRIFFIS

DU lIS) =o.0
70 CONTINUE

00 71 15=143
DO 71 J5=1e6
6415. .353O.0

71 CONTINUE
sf3*2)=a(1*I)=BqX
8f3*4)=RAlo3)=sRY
8343.63a8Cl.5)= 8Z
B13,i)=s3t2o2)=C<X843.1 )6<Z42.2CCX
54 3.33=6(2.43=CCY
Bt3.53=BI2,6) =CCZ
DO 72 J6M.s3
LI=NP I4'J6f
0U42*J6-1)=DELUt?*Lt-1?

72 DUI2*J6) =DELU4?*Lt)
0O 73 LR=143
DEtL23=O.o
DO 74 K21.o6

74 DEILa,=DE(La!)+IC1.0,2.0*AREA(141))*84L2,K2)*DUCK2)
DELM IC14L2)=DE(L2)

73 DELM(t14.51i0.C
C FORM APPROPRIATE CONSTITUTIVE MATWIX* GE. AND CALCULATE STRESS lNCRES'MNTS*

IFWFP(14).EO.1) GO TO 76
GEF191)=COEp
GE(2s2)=GE(1*1.
GEtl.2?=COEF*PR
GEf21')=GE 1.2)
GE13 3)=1.0/42*1*t1.0+PR))
GE(1433=GE(341)=GE 32})=GE42*33 O0O
lPCCYC*EO.O) CO TO 7i

76 CONTINUE
T142.O{*SELM(14,1).SELMt 4I4,23/3.O
T2=t2.0*SELMiI4.2)-SELMII4,I))/3.O
T3=4-SELM(14.1 -SELMI14.23 )/3.0
T4=SELM414433
IFCEPCI4).EO.3 GO TO 75
F=9.O*E/(4O0*SELM(14T5)**2*HEFFtlA))
Rzl.O+F*44T1+12)**2) *COEF+2.O*F*(T4**2-Tl*T23/CI.O4PR)
GEtl =I.*O+F*T2**242.0*F*T4**2/4l.O+PR3)*COLF/R
GEti,2)=tpR-F*Tl*T2+4.O*PR*F*T4**2/t1.O+ipR) )*COEF/R
GE42 il)GE{1.2>
GEIl,33.t-F*tPR*T2+T1)*T4/41.0+4P)3*COtF/R
GEC3. I 3GEC 1 33
0Et2.2)=4 IOtF*T1**2-e2.O*F*T4**2/C 2.O+PF'O *C~efj/W
GEI2.33=<-F*(PR*T1+T2)*T4/CI.0+PRF*COEF/R
GE 3s23-GEC 2.3)
GEC3,3)-t itO - PR+F*(lt**2+2.O*PR*T1*T2-eT2-+*23/4I.O*PNI)*

1COEF/{2*0*R)
75 CONTINUE

DO 77 L3=1.3
DSCL3)=0.0
DO 78 C3=W13

78 S(L3)V=DS4L33+GEiL3SK33*DE(K)3
77 SELMl4I4,L3)=D5<L3)

SELM(t4,4>=SELM1IC4o4)=O.0
DELMlCI4.4)=EP4l4)*4F*T3*tTl*SELMI(i4.1)+T2*SELMI414.2)+

12.O*T4*SELMI(14*33))-PR*CSELM1tI4I.)+SELMI4I442))
IF4CYC.EQ.0) GO TO 99
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IFCEPC14)3EO.Il GO TO 69
C
C DETERMINE THE NEXT ELEMENT TO YIELDCJYD) AND THE LOAD INCREMENT
C REOUIRED(INCR).
C

Tll=2*0*SELMI(1491)-SELM1C14,2)a/3fo
T22=CZ.O*SELM1114.2)-SELMI(1491)3/3.0
T33=(-SELM1C14,1 -SELMIC14,2))/3.0
T44=SELMIC14.3)
A=T1*TII+T2*T22+T3*T33+2*0*T4*T44
B=TI1**2+T22**2+T33**2+2-0*T44**2
C=TI**2+T2**2+T3**2+2*O*T4**2
INCRI=(-A+SQRTFCA**2-B*(C-2.0*SBAR**2/3.o,3)/B
IFIlNCR1.GT.INCR) GO TO 99
INCR=INCRI
JYD=14

99 CONTINUE
69 CONTINUE

IFCCYC.EO-.0 GO TO 91
C
C CALCULATE STRESS AND STRAIN CHANGE IN EACH ELEMENT DUE TO
C LOAD INCREMENT. INCR.
C

CONV=0.0
DO 100 14=l M
DO 101 J=1.4
DELMIC14.J)=DELM1C14.J3*INCR

101 SELMI(14.J)=SELM(lt4.Jl*INCR
Tl=I2ZO*SELM(14,1)-SELMCI4,23,/3ao
T2=C2.0*$ELMC14,2,-SELM(149111/3.0
T3=C-SELM( 1491)-SELM(14*231/3.0
T4=SELM(14.33
Tlt=C2.0*SELM1C14, 1-SELMI(14.2)3/3.0
T22=C2.0*SELM1C14,23-SELMI(14,1))/3.0
T33=t-SELMCIT4.13-SELM1(14,21,/3.0
T44=SELMI(14.3)
SM=SORTF(3.O*CCTl+TlIl)**2+(T2+T22)**2+CT3+T33)**2+2.O*CT4+T

44 )**2 )
1/2.0)
SELMlI4 .53=SM-SELMI4 .51
IFCEP(143.FQ.O. GO TO 100

C
C DETERMINE DEGREE OF DEVIATIONCCONV) FROM FLOW CURVE AND ADJUST
C TANGENT MODULUS IF DEVIATION EXCEEDS PREDETERMINED AMOUNT(CRITI.
C

E1=DELMIC141 )-(SELM1IC14.1-PR*SELM1C14,2)E
E2=DELM[114.2)-lSELMIIE4.23-PR*SELMICI4.1))
E3=DELMi(14.43+PR*(SELMI(14.13+SELMI114,2)1
E4=DELM1114.33-.1.O+PR)*SELM1114,3)*2 .o
EM=SORTF126 0*CEl**2+E**2+EJ**2+E4**2/2.0)/3.0)
DELMI 14.5) =EM
EM=FM+DELMCI4.5)
CALL SUBSEM(EM, SBARYBARNO.HEMSEM E)
CONVI=AASFC(SM-SEM)/SFM}
IFCCONVI.LT.CONV, GO TO 102
CONV=CONVI

102 CONTINUE
IFCCONVi.LT.CRITI GO TO 100
HeFFC14)=CSEM-SELM(140,53/DELMI(14 5)*E
SI=O
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100 CONTINUE
IFLS1.FOI) GO TO So
IF4NITER.EO.NITMAX3 GO TO 94
NITeR=NITER+1
GO TO 53

SO CONTINU1E

C ADD STRESS AND STRAIN INCREMENTS TO INITIAL VALUES, ESTIMATE PLASTIC
C MODULI FOR NEXT LOAD INCREMENT. AND UPDATE COORDINATES AND
C ELEMENTAL THICKNESSES.

PIZYRAR/{SBAR*E3

00 PP1 31.9,DO SP J= I *5;
SELM4I3J)=5ELM4I4J4+SELMltI.J)

82 DELMlTJ3=DELMCI.J1+DELMI4I$,J
THKNtS I )=THKNSI I )*( l *O+DELMI t I 4)*PI)
JF FP{I).EO.O) GO TO 8t
EM=OFLM( t v.5)
CALL SUBSEM(EM.SRARYBAR.NOHEM.SEMsE)
HFFF I)=HEM

pl CONTINUE
EP4JYO3 =l
HEFFCJYD)=H(1.1)
DO 132 1=1*N
COR ! * 1) =CORDI .1 i)+tDELU4 2*1-1 3*YBAR/(E*SBAR ) 1*3NCR

132 CORDCI,2)=CORD4J.2)+4DeLU%2*I)tYSAR/tE*SBAR))*INCR

C PRINT OUT RESULTS FOR CYCLE COMPLETED. CYCLE COMPLETEO(CYC), NO.
C OF ITERATIONS REOUIREDINITER). ELEMENT YIELDED. ACCUMULATED LOAD.
C AND MAX DEVIATION FROM FLOW CURVEfCONV). ACCUMULATEO STRESSES AND
C STRAINS ARE PRINTED EVERY 10TH CYCLEe
C

WRITEt61 671 CYCtNITER
WRITE(61.1033 JYD
ACCUM=ACCUM+INCR
WP!TF6il*13g) ACCtUM
WPITF(6i19n) CONV
15=cYC/lO
F1=CYC/10.0
F2=1i-Fl
TF(CYC.GT.O.AND.F2.NE.O.O) GO TO 171
WRITE161.82)
DO 99 t=I2M

99 WR1TEf161,8q3) IOELM4IsJ)sJ=1*5)
WRITE6tS 84)
D0 93 I=I4M

93 WRITEC61S 83) 1 4SELMI I JlJ=t.5)
171 CONTINUE

IF(CYCEQ.CYCMAX) GO TO 127
CYC=CYC+I
IF(CYC.EO.tCYCMAX+I)) GO TO 127
NITFR= I
GO TO 93

94 WARTET(6I.8$C
WRITEA61¼9O) CONV
WRlTEl(61.67) CYCNI rER
GO TO 127

ql CONTINUE

28
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C
C PRINT OUT RESULTS FOR ELASTIC SOLUTION. POISSONS RATIOCPR3, NO. OF
C ELEMENTS(M3, NO. OF NODES(N), STRESSES AND STRAINS FOR ALL ELEMENTS.
C

WRtTE.61.117) PR*M*N
WRITE(61-120)
Do 119 1=10M
00 144 J=t 4

144 DELM(tiJ3=DFLMI.T4J3
119 WRITF161 .33 I,(DELMI(I J)lJ=l*4)

WPITFC61i.118)
DO 1?1 I=IM
DO 143 J=1*4

143 SFLM(I.J=5ELM1CI.J3
121 WRITEC6t.83) lSELMICIJ3,J=1s4)

CYC=0 I

tFCCYCMAX.GT.03 GO TO 138
GO TO 1?0

C
c PRINT OUT. MAX NO. OF CYCLES ALLOWEDCCYCMAX3. MAX NO. OF ITERATIONS
C ALLOWEDCNITMAX)t FIRST ELEMENT TO YIELDIJI)s MAX EFFECTIVE STRESS
C FROM ELASTIC SOLN(SBAR3. PROPORTIONAL LIMITIYBAR). NO. OF POINTS
C ENTERED ON FLOW CURVEtNOI. MAX ALLOWABLE DEVIATION FROM FLOW CURVECCRIT).

I27 WRITFC61.113 CYCMAXNITMAX.JI.SBARYBARENOCRIT
1PQ CONTINUF

F ND

a
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SUBROUT!NE SUSSEMCEMISBAR1,Y5AR1,NO;.HEMI .SEf1I,*Ei 3
COMMON/A/Nt 30.3)
EM? 1=EMI*Y8ARI/(S8ARl*El 3
IFtEMI.L..LT.HCNO1*3)) GO TO 3
SEMi i=tEmI I-HINOt ,3) *HINOI . I )+H(NO1 .)
HEMI=HIN01 4 1)
GO TO 2

3 DO 1 I=INOI
IFtEMIi.GE.H(I +I33*3 GO TO I
SEMI1=tEMIt-HlCI*3))*Ht.I)+HitE2)
HEMI=H I,?)
GO TO 2

1 CONTINUE
2 SEMI=SEMIl*SBARI/YBAR2

RETUJRN
END
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SUBROUTINE SOLVECN2I*BDW13
TYPE INTEGER BDWl
COMMON/I/Al(454,363 DELFIC454) DELUI(4891
DIMENSION M1C36,36)oC1C36)
NL=N?I-l
M5=CBDW?+l3/2
M7=MI=MS-I
DO 25 1=lMS
DO 25 J=!'M5

25 M1(I .JI=BlCJI )=A1(I*J+1-I3
DO 70 N-IlNL
DO q I=lMS

5 AIIN.I)CC13=RlBt1.13
DO 20 I=lMI
R=-R1 (1+1 . 1/C l l)
DO 30 J=lsMl

30 I!,J3=BlCt+l, +P*CICJ4I3
20 DELFICN+I)=DELFI4N+I)+R*DELFlCN3

IFt(N+Mt).GF.N213 GO TO 50
DO 60 1=3,ME5

60' AlM%,I)=Bl(IsM9=AlCN+I.M5+I..I
GO TO 70

50 M5=MI
Ml=MI-1

70 CONTINUE
DELUUlCN2I =DELF1lN21l/Bl l(l.
00 6 1=2N21

M4-NP1-t+l
SUM=O.0
DO 7 K=IM7

7 SUM=SUM+DELU1IM4+KI*AlM4.K+l)
6 DELUlCM43=CoELFiCM4)-SUM3/AICM4.1)

RETURN
END

31
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